Borel-Smith functions and the Dade group

Date

2007

Authors

Bouc, S.
Yalçın, E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
8
downloads

Citation Stats

Series

Abstract

We show that there is an exact sequence of biset functors over p-groups0 → Cb over(→, j) B* over(→, Ψ) DΩ → 0 where Cb is the biset functor for the group of Borel-Smith functions, B* is the dual of the Burnside ring functor, DΩ is the functor for the subgroup of the Dade group generated by relative syzygies, and the natural transformation Ψ is the transformation recently introduced by the first author in [S. Bouc, A remark on the Dade group and the Burnside group, J. Algebra 279 (2004) 180-190]. We also show that the kernel of mod 2 reduction of Ψ is naturally equivalent to the functor B× of units of the Burnside ring and obtain exact sequences involving the torsion part of DΩ, mod 2 reduction of Cb, and B×. © 2006 Elsevier Inc. All rights reserved.

Source Title

Journal of Algebra

Publisher

Academic Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English