On a theorem of gobel on permutation invariants
dc.citation.epage | 3729 | en_US |
dc.citation.issueNumber | 10 | en_US |
dc.citation.spage | 3723 | en_US |
dc.citation.volumeNumber | 36 | en_US |
dc.contributor.author | Sezer, M. | en_US |
dc.date.accessioned | 2016-02-08T10:07:35Z | |
dc.date.available | 2016-02-08T10:07:35Z | |
dc.date.issued | 2008 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let F be a field, let S = F[X1,..., Xn] be a polynomial ring on variables X1,..., Xn, and let G be a group of permutations of {X1,..., Xn}. Gobel proved that for n ≥ 3 the ring of invariants SG is generated by homogeneous elements of degree at most [image omitted]. In this article, we obtain reductions in the set of generators introduced by Gobel and sharpen his bound for almost all permutation groups over any ground field. Copyright © Taylor & Francis Group, LLC. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:07:35Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008 | en |
dc.identifier.doi | 10.1080/00927870802158051 | en_US |
dc.identifier.issn | 0092-7872 | |
dc.identifier.uri | http://hdl.handle.net/11693/22996 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1080/00927870802158051 | en_US |
dc.source.title | Communications in Algebra | en_US |
dc.subject | Permutation groups | en_US |
dc.subject | Polynomial invariants | en_US |
dc.title | On a theorem of gobel on permutation invariants | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On a theorem of gobel on permutation invariants.pdf
- Size:
- 259.14 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version