On a theorem of gobel on permutation invariants

dc.citation.epage3729en_US
dc.citation.issueNumber10en_US
dc.citation.spage3723en_US
dc.citation.volumeNumber36en_US
dc.contributor.authorSezer, M.en_US
dc.date.accessioned2016-02-08T10:07:35Z
dc.date.available2016-02-08T10:07:35Z
dc.date.issued2008en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet F be a field, let S = F[X1,..., Xn] be a polynomial ring on variables X1,..., Xn, and let G be a group of permutations of {X1,..., Xn}. Gobel proved that for n ≥ 3 the ring of invariants SG is generated by homogeneous elements of degree at most [image omitted]. In this article, we obtain reductions in the set of generators introduced by Gobel and sharpen his bound for almost all permutation groups over any ground field. Copyright © Taylor & Francis Group, LLC.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:07:35Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1080/00927870802158051en_US
dc.identifier.issn0092-7872
dc.identifier.urihttp://hdl.handle.net/11693/22996
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/00927870802158051en_US
dc.source.titleCommunications in Algebraen_US
dc.subjectPermutation groupsen_US
dc.subjectPolynomial invariantsen_US
dc.titleOn a theorem of gobel on permutation invariantsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On a theorem of gobel on permutation invariants.pdf
Size:
259.14 KB
Format:
Adobe Portable Document Format
Description:
Full printable version