Electrochemical stability and ambipolar charge transport in diketopyrrolopyrrole-based organic materials
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
An important strategy for realizing flexible complementary circuits with organic semiconductors is to achieve balanced ambipolar charge transport properties with reduced anisotropy. Here, we present a series of star-shaped diketopyrrolopyrrole (DPP)-based organic materials synthesized for improved intermolecular charge transport while retaining the ambipolar charge transport properties of their linear counterparts. Steady-state UV−visible spectroscopic studies confirm that the oligomers are highly aggregated in the thin film as evidenced from appearance of prominent vibronic features and red-shifted absorption bands. Ambipolar transport properties of these materials were verified in organic field-effect transistors (OFETs). The results show that the star-shaped DPP systems have the potential to outperform their linear counterparts in devices