Measures of model uncertainty and calibrated option bounds
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Recently, Cont introduced a quantitative framework for measuring model uncertainty in the context of derivative pricing [Model uncertainty and its impact on the pricing of derivative instruments, Math. Finance, 16(3) (2006), pp. 519-547]. Two measures of model uncertainty were proposed: one measure based on a coherent risk measure compatible with market prices of derivatives and another measure based on convex risk measures. We show in a discrete time, finite state probability setting, that the two measures introduced by Cont are closely related to calibrated option bounds studied recently by King et al. [Calibrated option bounds, Inf. J. Ther. Appl. Financ., 8(2) (2005), pp. 141-159]. The precise relationship is established through convex programming duality. As a result, the model uncertainty measures can be computed efficiently by solving convex programming or linear programming problems after a suitable discretization. Numerical results using S&P 500 options are given.