Analysis of two types of cyclic biological system models with time delays

Date

2011

Editor(s)

Advisor

Özbay, Hitay

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
28
downloads

Series

Abstract

In this thesis, we perform the stability analysis of two types of cyclic biological processes involving time delays. We analyze the genetic regulatory network having nonlinearities with negative Schwarzian derivatives. Using preliminary results on Schwarzian derivatives, we present necessary conditions implying the global stability and existence of periodic solutions regarding the genetic regulatory network. We also analyze homogenous genetic regulatory network and prove some stability conditions which only depend on the parameters of the nonlinearity function. In the thesis, we also perform a local stability analysis of a dynamical model of erythropoiesis which is another type of cyclic system involving time delay. We prove that the system has a unique fixed point which is locally stable if the time delay is less than a certain critical value, which is analytically computed from the parameters of the model. By the help of simulations, existence of periodic solutions are shown for delays greater than this critical value.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)