Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides

buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage4047en_US
dc.citation.issueNumber20en_US
dc.citation.spage4043en_US
dc.citation.volumeNumber407en_US
dc.contributor.authorAkosman, Ahmet E.en_US
dc.contributor.authorMutlu, Mehmeten_US
dc.contributor.authorKurt, H.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.coverage.spatialRethymnon, Crete, Greeceen_US
dc.date.accessioned2016-02-08T12:12:43Z
dc.date.available2016-02-08T12:12:43Z
dc.date.issued2012-02-28en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference name: Proceedings of the conference - Wave Propagation: From Electrons to Photonic Crystals and Metamaterials in honor of Prof. C. M. Soukoulis’ 60th birthdayen_US
dc.descriptionDate of Conference: 8-11 June 2011en_US
dc.description.abstractA dual-frequency division de-multiplexing mechanism is demonstrated using cascaded photonic crystal waveguides with unequal waveguide widths. The de-multiplexing mechanism is based on the frequency shift of the waveguide bands for the unequal widths of the photonic crystal waveguides. The modulation in the waveguide bands is used for providing frequency selectivity to the system. The slow light regime of the waveguide bands is utilized for extracting the desired frequency bands from a wider photonic crystal waveguide that has a relatively larger group velocity than the main waveguide for the de-multiplexed frequencies. In other words, the wider spatial distribution of the electric fields in the transverse direction of the waveguide for slow light modes is utilized in order to achieve the dropping of the modes to the output channels. The spectral and spatial de-multiplexing features are numerically verified. It can be stated that the presented mechanism can be used to de-multiplex more than two frequency intervals by cascading new photonic crystal waveguides with properly selected widths.en_US
dc.identifier.doi10.1016/j.physb.2012.02.024en_US
dc.identifier.issn0921-4526
dc.identifier.urihttp://hdl.handle.net/11693/28158
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.physb.2012.02.024en_US
dc.source.titlePhysica B: Condensed Matteren_US
dc.subjectDe-multiplexeren_US
dc.subjectOptical communicationen_US
dc.subjectPhotonic crystalen_US
dc.subjectSlow lighten_US
dc.subjectDe-multiplexeren_US
dc.subjectDual frequencyen_US
dc.subjectFrequency intervalsen_US
dc.subjectFrequency selectivityen_US
dc.subjectFrequency shiften_US
dc.subjectGroup velocitiesen_US
dc.subjectLight regimeen_US
dc.subjectOutput channelsen_US
dc.subjectPhotonic crystal waveguideen_US
dc.subjectTransverse directionsen_US
dc.subjectElectric fieldsen_US
dc.subjectFrequency bandsen_US
dc.subjectLaser opticsen_US
dc.subjectMultiplexingen_US
dc.subjectMultiplexing equipmenten_US
dc.subjectOptical communicationen_US
dc.subjectPhotonic crystalsen_US
dc.subjectSlow lighten_US
dc.subjectWaveguidesen_US
dc.subjectOptical waveguidesen_US
dc.titleDual-frequency division de-multiplexer based on cascaded photonic crystal waveguidesen_US
dc.typeConference Paperen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides.pdf
Size:
715.87 KB
Format:
Adobe Portable Document Format
Description:
Full printable version