Factorizations of matrices over projective-free Rings

dc.citation.epage32en_US
dc.citation.issueNumber1en_US
dc.citation.spage23en_US
dc.citation.volumeNumber23en_US
dc.contributor.authorChen, H.en_US
dc.contributor.authorKose, H.en_US
dc.contributor.authorKurtulmaz, Y.en_US
dc.date.accessioned2018-04-12T11:05:55Z
dc.date.available2018-04-12T11:05:55Z
dc.date.issued2016en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractAn element of a ring R is called strongly J#-clean provided that it can be written as the sum of an idempotent and an element in J#(R) that commute. In this paper, we characterize the strong J#-cleanness of matrices over projective-free rings. This extends many known results on strongly clean matrices over commutative local rings. © 2016 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and Suzhou University.en_US
dc.identifier.doi10.1142/S1005386716000043en_US
dc.identifier.eissn0219-1733
dc.identifier.issn1005-3867
dc.identifier.urihttp://hdl.handle.net/11693/37208
dc.language.isoEnglishen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S1005386716000043en_US
dc.source.titleAlgebra Colloquiumen_US
dc.subjectCharacteristic polynomialen_US
dc.subjectProjective-free ringen_US
dc.subjectStrongly J#-matrixen_US
dc.subject15A23en_US
dc.subject15B99en_US
dc.subject16L99en_US
dc.titleFactorizations of matrices over projective-free Ringsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Factorizations of Matrices over Projective-free Rings.pdf
Size:
141.21 KB
Format:
Adobe Portable Document Format
Description:
Full printable version