Finding the best portable congruential random number generators

Date

2013-08

Authors

Sezgin, F.
Sezgin, T. M.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Computer Physics Communications

Print ISSN

0010-4655

Electronic ISSN

1879-2944

Publisher

Elsevier

Volume

184

Issue

8

Pages

1889 - 1897

Language

English

Journal Title

Journal ISSN

Volume Title

Usage Stats
1
views
30
downloads

Attention Stats

Series

Abstract

Linear congruential random number generators must have large moduli to attain maximum periods, but this creates integer overflow during calculations. Several methods have been suggested to remedy this problem while obtaining portability. Approximate factoring is the most common method in portable implementations, but there is no systematic technique for finding appropriate multipliers and an exhaustive search is prohibitively expensive. We offer a very efficient method for finding all portable multipliers of any given modulus value. Letting M = AB+C, the multiplier A gives a portable result if B-C is positive. If it is negative, the portable multiplier can be defined as A = left perpendicularM/Brightperpendicular. We also suggest a method for discovering the most fertile search region for spectral top-quality multipliers in a two-dimensional space. The method is extremely promising for best generator searches in very large moduli: 64-bit sizes and above. As an application to an important and challenging problem, we examined the prime modulus 2(63)-25, suitable for 64-bit register size, and determined 12 high quality portable generators successfully passing stringent spectral and empirical tests.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)