RuO2 supercapacitor enables flexible, safe, and efficient optoelectronic neural interface

buir.contributor.orcidUlgut, Burak|0000-0002-4402-0033en_US
dc.citation.epage2109365- 12en_US
dc.citation.issueNumber31en_US
dc.citation.spage2109365- 1en_US
dc.citation.volumeNumber32en_US
dc.contributor.authorKaratum, O.
dc.contributor.authorYildiz, E.
dc.contributor.authorKaleli, H. N.
dc.contributor.authorSahin, A.
dc.contributor.authorUlgut, Burak
dc.contributor.authorNizamoglu, S.
dc.contributor.bilkentauthorUlgut, Burak
dc.date.accessioned2023-02-27T12:58:40Z
dc.date.available2023-02-27T12:58:40Z
dc.date.issued2022-08-01
dc.departmentDepartment of Chemistryen_US
dc.description.abstractOptoelectronic biointerfaces offer a wireless and nongenetic neurostimulation pathway with high spatiotemporal resolution. Fabrication of low-cost and flexible optoelectronic biointerfaces that have high photogenerated charge injection densities and clinically usable cell stimulation mechanism is critical for rendering this technology useful for ubiquitous biomedical applications. Here, supercapacitor technology is combined with flexible organic optoelectronics by integrating RuO2 into a donor–acceptor photovoltaic device architecture that facilitates efficient and safe photostimulation of neurons. Remarkably, high interfacial capacitance of RuO2 resulting from reversible redox reactions leads to more than an order-of-magnitude increase in the safe stimulation mechanism of capacitive charge transfer. The RuO2-enhanced photoelectrical response activates voltage-gated sodium channels of hippocampal neurons and elicits repetitive, low-light intensity, and high-success rate firing of action potentials. Double-layer capacitance together with RuO2-induced reversible faradaic reactions provide a safe stimulation pathway, which is verified via intracellular oxidative stress measurements. All-solution-processed RuO2-based biointerfaces are flexible, biocompatible, and robust under harsh aging conditions, showing great promise for building safe and highly light-sensitive next-generation neural interfaces.en_US
dc.identifier.doi10.1002/adfm.202109365en_US
dc.identifier.issn1616-301X
dc.identifier.urihttp://hdl.handle.net/11693/111827
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.relation.isversionofhttps://doi.org/10.1002/adfm.202109365en_US
dc.source.titleAdvanced Functional Materialsen_US
dc.subjectBiointerfacesen_US
dc.subjectNeural interfacesen_US
dc.subjectOrganic bioelectronicsen_US
dc.subjectPhotostimulationen_US
dc.subjectSupercapacitorsen_US
dc.titleRuO2 supercapacitor enables flexible, safe, and efficient optoelectronic neural interfaceen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuO2_supercapacitor_enables_flexible_safe_and_efficient_optoelectronic_neural_interface.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: