Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage684en_US
dc.citation.issueNumber2en_US
dc.citation.spage670en_US
dc.citation.volumeNumber18en_US
dc.contributor.authorOzel I.O.en_US
dc.contributor.authorOzel, T.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.contributor.authorTuncel, D.en_US
dc.date.accessioned2016-02-08T10:00:23Z
dc.date.available2016-02-08T10:00:23Z
dc.date.issued2010en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractThis work demonstrates the comparative studies of non-radiative resonance energy transfer in bi-polymer nanoparticles based on fluorescent conjugated polymers. For this purpose, poly[(9,9-dihexylfluorene) (PF) as a donor (D) and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as an acceptor (A) have been utilized, from which four different bi-polymer nanoparticle systems are designed and synthesized. Both, steady-state fluorescence spectra and time-resolved fluorescence measurements indicate varying energy transfer efficiencies from the host polymer PF to the acceptor polymer MEH-PPV depending on the D-A distances and structural properties of the nanoparticles. The first approach involves the preparation of PF and MEH-PPV nanoparticles separately and mixing them at a certain ratio. In the second approach, first PF and MEH-PPV solutions are mixed prior to nanoparticle formation and then nanoparticles are prepared from the mixture. Third and fourth approaches involve the sequential nanoparticle preparation. In the former, nanoparticles are prepared to have PF as a core and MEH-PPV as a shell. The latter is the reverse of the third in which the core is MEH-PPV and the shell is PF. The highest energy transfer efficiency recorded to be 35% is obtained from the last system, in which a PF layer is sequentially formed on MEH-PPV NPs. © 2010 Optical Society of America.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:00:23Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010en
dc.identifier.doi10.1364/OE.18.000670en_US
dc.identifier.issn10944087
dc.identifier.urihttp://hdl.handle.net/11693/22457
dc.language.isoEnglishen_US
dc.publisherOptical Society of American (OSA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/OE.18.000670en_US
dc.source.titleOptics Expressen_US
dc.subjectConjugated polymersen_US
dc.subjectEnergy transferen_US
dc.subjectFluorescenceen_US
dc.subjectOrganic polymersen_US
dc.subjectResonanceen_US
dc.subjectComparative studiesen_US
dc.subjectEnergy transfer efficiencyen_US
dc.subjectFluorescent conjugated polymersen_US
dc.subjectHost polymersen_US
dc.subjectMEH-PPVen_US
dc.subjectMethoxyen_US
dc.subjectNanoparticle formationen_US
dc.subjectNon-radiativeen_US
dc.subjectPolymer nanoparticlesen_US
dc.subjectResonance energy transferen_US
dc.subjectSteady-state fluorescenceen_US
dc.subjectTime-resolved fluorescence measurementsen_US
dc.subjectNanoparticlesen_US
dc.subjectfluorescent dyeen_US
dc.subjectnanoparticleen_US
dc.subjectpolymeren_US
dc.subjectarticleen_US
dc.subjectchemistryen_US
dc.subjectfluorescence resonance energy transferen_US
dc.subjectmaterials testingen_US
dc.subjectmethodologyen_US
dc.subjectultrastructureen_US
dc.subjectFluorescence Resonance Energy Transferen_US
dc.subjectFluorescent Dyesen_US
dc.subjectMaterials Testingen_US
dc.subjectNanoparticlesen_US
dc.subjectPolymersen_US
dc.titleNon-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymersen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers.pdf
Size:
621.25 KB
Format:
Adobe Portable Document Format
Description:
Full printable version