Fusion system and group actions with abelian isotropy subgroups

dc.citation.epage886en_US
dc.citation.issueNumber3en_US
dc.citation.spage873en_US
dc.citation.volumeNumber56en_US
dc.contributor.authorÜnlü, Ö.en_US
dc.contributor.authorYalçın, E.en_US
dc.date.accessioned2015-07-28T12:04:45Z
dc.date.available2015-07-28T12:04:45Z
dc.date.issued2013en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe prove that if a finite group G acts smoothly on a manifold M such that all the isotropy subgroups are abelian groups with rank ≤ k, then G acts freely and smoothly on M × double struk S signn1 ×... × double struk S signnk for some positive integers n1, ..., nk. We construct these actions using a recursive method, introduced in an earlier paper, that involves abstract fusion systems on finite groups. As another application of this method, we prove that every finite solvable group acts freely and smoothly on some product of spheres, with trivial action on homology. Copyright © Edinburgh Mathematical Society 2013.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:04:45Z (GMT). No. of bitstreams: 1 10.1017-S0013091513000345.pdf: 206146 bytes, checksum: 06eb9154038a118fb48cbe31c5dc42c9 (MD5)en
dc.identifier.doi10.1017/S0013091513000345en_US
dc.identifier.eissn0013-0915
dc.identifier.issn0013-0915
dc.identifier.urihttp://hdl.handle.net/11693/13145
dc.language.isoEnglishen_US
dc.publisherEdinburgh Mathematical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/S0013091513000345en_US
dc.source.titleProceedings of the Edinburgh Mathematical Societyen_US
dc.subjectfusion systemsen_US
dc.subjectfree actions on manifoldsen_US
dc.subjectproducts of spheresen_US
dc.titleFusion system and group actions with abelian isotropy subgroupsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fusion_systems_and_group_actions_with_abelian_isotropy_subgroups.pdf
Size:
193.73 KB
Format:
Adobe Portable Document Format
Description:
Full printable version