Two-tier tissue decomposition for histopathological image representation and classification

dc.citation.epage283en_US
dc.citation.issueNumber1en_US
dc.citation.spage275en_US
dc.citation.volumeNumber34en_US
dc.contributor.authorGultekin, T.en_US
dc.contributor.authorKoyuncu, C. F.en_US
dc.contributor.authorSokmensuer, C.en_US
dc.contributor.authorGunduz Demir, C.en_US
dc.date.accessioned2016-02-08T10:08:57Z
dc.date.available2016-02-08T10:08:57Z
dc.date.issued2015en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractIn digital pathology, devising effective image representations is crucial to design robust automated diagnosis systems. To this end, many studies have proposed to develop object-based representations, instead of directly using image pixels, since a histopathological image may contain a considerable amount of noise typically at the pixel-level. These previous studies mostly employ color information to define their objects, which approximately represent histological tissue components in an image, and then use the spatial distribution of these objects for image representation and classification. Thus, object definition has a direct effect on the way of representing the image, which in turn affects classification accuracies. In this paper, our aim is to design a classification system for histopathological images. Towards this end, we present a new model for effective representation of these images that will be used by the classification system. The contributions of this model are twofold. First, it introduces a new two-tier tissue decomposition method for defining a set of multityped objects in an image. Different than the previous studies, these objects are defined combining texture, shape, and size information and they may correspond to individual histological tissue components as well as local tissue subregions of different characteristics. As its second contribution, it defines a new metric, which we call dominant blob scale, to characterize the shape and size of an object with a single scalar value. Our experiments on colon tissue images reveal that this new object definition and characterization provides distinguishing representation of normal and cancerous histopathological images, which is effective to obtain more accurate classification results compared to its counterparts.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:08:57Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1109/TMI.2014.2354373en_US
dc.identifier.eissn1558-254Xen_US
dc.identifier.issn0278-0062en_US
dc.identifier.urihttp://hdl.handle.net/11693/23103en_US
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TMI.2014.2354373en_US
dc.source.titleIEEE Transactions on Medical Imagingen_US
dc.subjectComputer-assisteden_US
dc.subjectTheoreticalen_US
dc.subjectAutomated cancer diagnosisen_US
dc.subjectBloben_US
dc.subjectDigital pathologyen_US
dc.subjectHistopathological image representationen_US
dc.subjectTissue decomposition modelen_US
dc.subjectClassification (of information)en_US
dc.subjectPathologyen_US
dc.subjectPixelsen_US
dc.subjectTissueen_US
dc.subjectTissue engineeringen_US
dc.subjectAutomated cancer diagnosisen_US
dc.subjectDecomposition modelen_US
dc.subjectHistopathological imagesen_US
dc.subjectImage classificationen_US
dc.subjectCancer gradingen_US
dc.subjectCancer tissueen_US
dc.subjectClassification algorithmen_US
dc.subjectColon canceren_US
dc.subjectColoren_US
dc.subjectControlled studyen_US
dc.subjectDiagnostic accuracyen_US
dc.subjectDiagnostic test accuracy studyen_US
dc.subjectDigital imagingen_US
dc.subjectDigital microscopeen_US
dc.subjectHistogramen_US
dc.subjectHistopathologyen_US
dc.subjectHumanen_US
dc.subjectHuman tissueen_US
dc.subjectIntermethod comparisonen_US
dc.subjectMajor clinical studyen_US
dc.subjectModelen_US
dc.subjectAlgorithmen_US
dc.subjectColon tumoren_US
dc.subjectHistologyen_US
dc.subjectImage processingen_US
dc.subjectProceduresen_US
dc.subjectTheoretical modelen_US
dc.subjectColonen_US
dc.subjectColonic neoplasmsen_US
dc.subjectHistological techniquesen_US
dc.subjectImage processingen_US
dc.titleTwo-tier tissue decomposition for histopathological image representation and classificationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Two-tier tissue decomposition for histopathological image representation and classification.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
Description:
Full printable version