Uniqueness of the solutions of sigma models in non-Riemannian background

dc.citation.epage269en_US
dc.citation.issueNumber4en_US
dc.citation.spage265en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorGürses, M.en_US
dc.date.accessioned2016-02-08T10:54:59Z
dc.date.available2016-02-08T10:54:59Z
dc.date.issued1992en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIt is proved that the boundary value problems of some sigma-models in a non-Riemannian background have unique solutions. Sigma models on Riemannian backgrounds, sigma models with a Wess-Zumino-Witten term, the Ward model, and the self-dual Yang-Mills equations are among these models. © 1992 Kluwer Academic Publishers.en_US
dc.identifier.doi10.1007/BF00420235en_US
dc.identifier.issn0377-9017
dc.identifier.urihttp://hdl.handle.net/11693/26098
dc.language.isoEnglishen_US
dc.publisherKluwer Academic Publishersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/BF00420235en_US
dc.source.titleLetters in Mathematical Physicsen_US
dc.subjectMathematics Subject Classifications (1991): 81E13, 81E20, 35J60, 35J65en_US
dc.titleUniqueness of the solutions of sigma models in non-Riemannian backgrounden_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Uniqueness of the solutions of sigma models in non-Riemannian background.pdf
Size:
172.61 KB
Format:
Adobe Portable Document Format
Description:
Full printable version