Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications
dc.citation.epage | 18353 | en_US |
dc.citation.issueNumber | 15 | en_US |
dc.citation.spage | 18344 | en_US |
dc.citation.volumeNumber | 21 | en_US |
dc.contributor.author | Günendi, M.C. | en_US |
dc.contributor.author | Tanyeli I. | en_US |
dc.contributor.author | Akgüç G.B. | en_US |
dc.contributor.author | Bek, A. | en_US |
dc.contributor.author | Turan, R. | en_US |
dc.contributor.author | Gülseren O. | en_US |
dc.date.accessioned | 2016-02-08T09:37:13Z | |
dc.date.available | 2016-02-08T09:37:13Z | |
dc.date.issued | 2013 | en_US |
dc.department | Department of Physics | en_US |
dc.description.abstract | The effects of substrates with technological interest for solar cell industry are examined on the plasmonic properties of Ag nanoparticles fabricated by dewetting technique. Both surface matching (boundary element) and propagator (finite difference time domain) methods are used in numerical simulations to describe plasmonic properties and to interpret experimental data. The uncertainty on the locations of nanoparticles by the substrate in experiment is explained by the simulations of various Ag nanoparticle configurations. The change in plasmon resonance due to the location of nanoparticles with respect to the substrate, interactions among them, their shapes, and sizes as well as dielectric properties of substrate are discussed theoretically and implications of these for the experiment are deliberated. ©2013 Optical Society of America. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:37:13Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013 | en |
dc.identifier.doi | 10.1364/OE.21.018344 | en_US |
dc.identifier.issn | 10944087 | |
dc.identifier.uri | http://hdl.handle.net/11693/20885 | |
dc.language.iso | English | en_US |
dc.publisher | Optical Society of American (OSA) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1364/OE.21.018344 | en_US |
dc.source.title | Optics Express | en_US |
dc.subject | Boundary element method | en_US |
dc.subject | Dielectric properties | en_US |
dc.subject | Experiments | en_US |
dc.subject | Finite difference time domain method | en_US |
dc.subject | Nanoparticles | en_US |
dc.subject | Solar cells | en_US |
dc.subject | Substrates | en_US |
dc.subject | Time domain analysis | en_US |
dc.subject | Ag nanoparticle | en_US |
dc.subject | De-wetting | en_US |
dc.subject | Experimental datum | en_US |
dc.subject | Large-area solar cells | en_US |
dc.subject | Plasmon resonances | en_US |
dc.subject | Plasmonic properties | en_US |
dc.subject | Surface matching | en_US |
dc.subject | Silver | en_US |
dc.subject | metal nanoparticle | en_US |
dc.subject | silver | en_US |
dc.subject | metal nanoparticle | en_US |
dc.subject | silver | en_US |
dc.subject | chemical phenomena | en_US |
dc.subject | chemistry | en_US |
dc.subject | computer aided design | en_US |
dc.subject | computer simulation | en_US |
dc.subject | device failure analysis | en_US |
dc.subject | devices | en_US |
dc.subject | equipment design | en_US |
dc.subject | light | en_US |
dc.subject | power supply | en_US |
dc.subject | radiation response | en_US |
dc.subject | radiation scattering | en_US |
dc.subject | solar energy | en_US |
dc.subject | surface plasmon resonance | en_US |
dc.subject | theoretical model | en_US |
dc.subject | ultrastructure | en_US |
dc.subject | wettability | en_US |
dc.subject | article | en_US |
dc.subject | chemistry | en_US |
dc.subject | equipment | en_US |
dc.subject | equipment failure | en_US |
dc.subject | radiation exposure | en_US |
dc.subject | surface plasmon resonance | en_US |
dc.subject | ultrastructure | en_US |
dc.subject | Computer Simulation | en_US |
dc.subject | Computer-Aided Design | en_US |
dc.subject | Electric Power Supplies | en_US |
dc.subject | Equipment Design | en_US |
dc.subject | Equipment Failure Analysis | en_US |
dc.subject | Hydrophobic and Hydrophilic Interactions | en_US |
dc.subject | Light | en_US |
dc.subject | Metal Nanoparticles | en_US |
dc.subject | Models, Theoretical | en_US |
dc.subject | Scattering, Radiation | en_US |
dc.subject | Silver | en_US |
dc.subject | Solar Energy | en_US |
dc.subject | Surface Plasmon Resonance | en_US |
dc.subject | Wettability | en_US |
dc.subject | Computer Simulation | en_US |
dc.subject | Computer-Aided Design | en_US |
dc.subject | Electric Power Supplies | en_US |
dc.subject | Equipment Design | en_US |
dc.subject | Equipment Failure Analysis | en_US |
dc.subject | Hydrophobic and Hydrophilic Interactions | en_US |
dc.subject | Light | en_US |
dc.subject | Metal Nanoparticles | en_US |
dc.subject | Models, Theoretical | en_US |
dc.subject | Scattering, Radiation | en_US |
dc.subject | Silver | en_US |
dc.subject | Solar Energy | en_US |
dc.subject | Surface Plasmon Resonance | en_US |
dc.subject | Wettability | en_US |
dc.title | Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications.pdf
- Size:
- 2.32 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version