In vivo human head MRI at 10.5T: a radiofrequency safety study and preliminary imaging results

Available
The embargo period has ended, and this item is now available.

Date

2020

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Magnetic Resonance in Medicine

Print ISSN

0740-3194

Electronic ISSN

Publisher

Wiley

Volume

84

Issue

1

Pages

484 - 496

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
68
downloads

Series

Abstract

Purpose: The purpose of this study is to safely acquire the first human head images at 10.5T. Methods: To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole‐body 10.5T scanner in the Center for Magnetic Resonance Research. Results: Quantitative agreement between the simulated and experimental results was obtained including S‐parameters, maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2‐ and ‐weighted images of human subjects at 10.5T. Conclusions: In this study, we acquired the first in vivo human head images at 10.5T using an 8‐channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8‐channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)