Diffusion tensor imaging and T2 relaxometry of bilateral lumbar nerve roots: feasibility of in‐plane imaging

buir.contributor.authorSarıtaş, Emine Ülkü
dc.citation.epage637en_US
dc.citation.issueNumber6en_US
dc.citation.spage630en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorKarampinos, D.en_US
dc.contributor.authorMelkus, G.en_US
dc.contributor.authorShepherd, T.en_US
dc.contributor.authorBanerjee, S.en_US
dc.contributor.authorSarıtaş, Emine Ülküen_US
dc.contributor.authorShankaranarayanan, A.en_US
dc.contributor.authorHess, C.en_US
dc.contributor.authorLink, T.en_US
dc.contributor.authorDillon, W.en_US
dc.contributor.authorMajumdar, S.en_US
dc.date.accessioned2020-04-09T17:54:35Z
dc.date.available2020-04-09T17:54:35Z
dc.date.issued2013
dc.departmentAysel Sabuncu Brain Research Center (BAM)en_US
dc.description.abstractLower back pain is a common problem frequently encountered without specific biomarkers that correlate well with an individual patient's pain generators. MRI quantification of diffusion and T2 relaxation properties may provide novel insight into the mechanical and inflammatory changes that occur in the lumbosacral nerve roots in patients with lower back pain. Accurate imaging of the spinal nerve roots is difficult because of their small caliber and oblique course in all three planes. Two‐dimensional in‐plane imaging of the lumbosacral nerve roots requires oblique coronal imaging with large field of view (FOV) in both dimensions, resulting in severe geometric distortions using single‐shot echo planar imaging (EPI) techniques. The present work describes initial success using a reduced‐FOV single‐shot spin‐echo EPI acquisition to obtain in‐plane diffusion tensor imaging (DTI) and T2 mapping of the bilateral lumbar nerve roots at the L4 level of healthy subjects, minimizing partial volume effects, breathing artifacts and geometric distortions. A significant variation in DTI and T2 mapping metrics is also reported along the course of the normal nerve root. The fractional anisotropy is statistically significantly lower in the dorsal root ganglia (0.287 ± 0.068) than in more distal regions in the spinal nerve (0.402 ± 0.040) (p < 10–5). The T2 relaxation value is statistically significantly higher in the dorsal root ganglia (78.0 ± 11.9 ms) than in more distal regions in the spinal nerve (59.5 ± 7.4 ms) (p < 10–5). The quantification of nerve root DTI and T2 properties using the proposed methodology may identify the specific site of any degenerative and inflammatory changes along the nerve roots of patients with lower back pain..en_US
dc.identifier.doi10.1002/nbm.2902en_US
dc.identifier.issn1099-1492
dc.identifier.urihttp://hdl.handle.net/11693/53581
dc.language.isoEnglishen_US
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.3406/anata.2007.1234en_US
dc.source.titleNMR in Biomedicineen_US
dc.subjectMRIen_US
dc.subjectDiffusion tensor imaging (DTI)en_US
dc.subjectT2relaxationen_US
dc.subjectPeripheral nervesen_US
dc.subjectLumbar nerve rootsen_US
dc.subjectReduced-field-of-view(FOV) single-shot echo planar imaging (EPI)en_US
dc.titleDiffusion tensor imaging and T2 relaxometry of bilateral lumbar nerve roots: feasibility of in‐plane imagingen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bilkent-research-paper.pdf
Size:
262.66 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: