Deep learning for multi-contrast MRI synthesis

Date

2021-07

Editor(s)

Advisor

Çukur, Tolga

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts. Multi-contrast images, in turn, better delineate tissues, accumulate diagnostic information, and enhance radiological analyses. Yet, prolonged, costly exams native to multi-contrast pro-tocols often impair the diversity, resulting in missing images from some contrasts. A promising remedy against this limitation arises as image synthesis that recovers missing target contrast images from available source contrast images. Learning-based models demonstrated remarkable success in this source-to-target mapping due to their prowess in solving even the most demanding inverse problems. Main-stream approaches proposed for synthetic MRI were typically subjected to a model training to perform either one-to-one or many-to-one mapping. One-to-one models manifest elevated sensitivity to detailed features of the given source, but they perform suboptimally when source-target images are poorly linked. Meanwhile, many-to-one counterparts pool information from multiple sources, yet this comes at the expense of losing detailed features uniquely present in cer-tain sources. Furthermore, regardless of the mapping, they both innately demand large training sets of high-quality source and target images Fourier-reconstructed from Nyquist-sampled acquisitions. However, time and cost considerations put significant challenges in compiling such datasets. To address these limitations, here we first propose a novel multi-stream model that task-adaptively fuses unique and shared image features from a hybrid of multiple one-to-one streams and a single many-to-one stream. We then introduce a novel semi-supervised learning framework based on selective tensor loss functions to learn high-quality image synthesis directly from a training dataset of undersampled acquisitions, bypass-ing the undesirable data requirements of deep learning. Demonstrations on brain MRI images from healthy subjects and glioma patients indicate the superiority of the proposed approaches against state-of-the-art baselines.

Course

Other identifiers

Book Title

Citation

item.page.isversionof