Transformation properties of Painleve VI equation

buir.advisorMugan, Ugurban
dc.contributor.authorSakka, Ayman
dc.date.accessioned2016-01-08T20:12:45Z
dc.date.available2016-01-08T20:12:45Z
dc.date.issued1995
dc.descriptionAnkara : Department of Mathematics and Institute of Engineering and Sciences, Bilkent University, 1995.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 1995.en_US
dc.descriptionIncludes bibliographical references leaves 26.en_US
dc.description.abstractIn this thesis, we studied the Schlesinger transformations of Painleve VI equation. We showed that Painleve VI equation admits Schlesinger transformations which relate a given solution of Paileve VI to solution of Painleve VI but with different values of the parameters. Using these transformations we obtained the corresponding Bäcklund transformations for Painleve VI. Also, we showed that the Schlesinger transformations and the corresponding Bäcklund transformations break down if and only if Painleve VI has certain one-parameter family of solutions.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T20:12:45Z (GMT). No. of bitstreams: 1 1.pdf: 78510 bytes, checksum: d85492f20c2362aa2bcf4aad49380397 (MD5)en
dc.description.statementofresponsibilitySakka, Aymanen_US
dc.format.extentvi, 26 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/17710
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPainleve Equations,en_US
dc.subjectMonodromy Dataen_US
dc.subjectSchlesinger Transformationsen_US
dc.subjectRiemann-Hilbert Problemen_US
dc.subject.lccQA371 .S25 1995en_US
dc.subject.lcshPainleve--Equations.en_US
dc.titleTransformation properties of Painleve VI equationen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B031657.pdf
Size:
729.3 KB
Format:
Adobe Portable Document Format
Description:
Full printable version