Fabrication of mesoporous metal chalcogenide nanoflake silica thin films and spongy mesoporous CdS and CdSe
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Mesoporous silica metal oxide (ZnO and CdO) thin films have been used as metal ion precursors to produce the first examples of mesoporous silica metal sulfide (mesoSiO2@ZnS, meso-SiO2@CdS) or silica metal selenide (meso-SiO2@ZnSe, meso-SiO2@CdSe) thin films, in which the pore walls are made up of silica and metal sulfide or metal selenide nanoflakes, respectively. A gentle chemical etching with a dilute HF solution of the meso-SiO2@CdS (or mesoSiO2@CdSe) produces mesoporous cadmium sulfide (meso-CdS) (or cadmium selenide, meso-CdSe). Surface modified meso-CdS displays bright blue photoluminescence upon excitation with a UV light. The mesoporous silica metal oxides are formed as metal oxide nanoislands over the silica walls through a self-assembly process of a mixture of metal nitrate salt-two surfactants-silica source followed by calcination step. The reactions, between the H2S (or H2Se) gas and solid precursors, have been carried out at room temperature and monitored using spectroscopy and microscopy techniques. It has been found that these reactions are:
- taking place through the diffusion of sulfur or selenium species from the top metal oxide layer to the silica metal oxide interface and 2) slow and can be stopped at any stage to obtain mesoporous silica metal oxide metal sulfide or silica metal oxide metal selenide intermediate thin films.