Comprehensive lower bounds on sequential prediction

Series

Abstract

We study the problem of sequential prediction of real-valued sequences under the squared error loss function. While refraining from any statistical and structural assumptions on the underlying sequence, we introduce a competitive approach to this problem and compare the performance of a sequential algorithm with respect to the large and continuous class of parametric predictors. We define the performance difference between a sequential algorithm and the best parametric predictor as regret, and introduce a guaranteed worst-case lower bounds to this relative performance measure. In particular, we prove that for any sequential algorithm, there always exists a sequence for which this regret is lower bounded by zero. We then extend this result by showing that the prediction problem can be transformed into a parameter estimation problem if the class of parametric predictors satisfy a certain property, and provide a comprehensive lower bound to this case.

Source Title

European Signal Processing Conference

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English