Solution surfaces and surfaces from a variotional principle

Date

2007

Editor(s)

Advisor

Gürses, Metin

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
36
downloads

Series

Abstract

In this thesis, we construct 2-surfaces in R 3 and in three dimensional Minkowski space (M3). First, we study the surfaces arising from modified Korteweg-de Vries (mKdV), Sine-Gordon (SG), and nonlinear Schr¨odinger (NLS) equations in R 3 . Second, we examine the surfaces arising from Korteweg-de Vries (KdV) and Harry Dym (HD) equations in M3. In both cases, there are some mKdV, NLS, KdV, and HD classes contain Willmore-like and algebraic Weingarten surfaces. We further show that some mKdV, NLS, KdV, and HD surfaces can be produced from a variational principle. We propose a method for determining the parametrization (position vectors) of the mKdV, KdV, and HD surfaces.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)

Language

English

Type