Proof-of-concept energy-efficient and real-time hemodynamic feature extraction from bioimpedance signals using a mixed-signal field programmable analog array
dc.citation.epage | 236 | en_US |
dc.citation.spage | 233 | en_US |
dc.contributor.author | Töreyin, Hakan | en_US |
dc.contributor.author | Shah, S. | en_US |
dc.contributor.author | Hersek, S. | en_US |
dc.contributor.author | İnan, O. T. | en_US |
dc.contributor.author | Hasler, J. | en_US |
dc.coverage.spatial | Orlando, FL, USA | en_US |
dc.date.accessioned | 2018-04-12T11:46:24Z | |
dc.date.available | 2018-04-12T11:46:24Z | |
dc.date.issued | 2017 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 16-19 February 2017 | en_US |
dc.description | Conference Name: IEEE EMBS International Conference on Biomedical & Health Informatics, BHI 2017 | en_US |
dc.description.abstract | We present a mixed-signal system for extracting hemodynamic parameters in real-time from noisy electrical bioimpedance (EBI) measurements in an energy-efficient manner. The proof-of-concept system consists of floating-gate-based analog signal processing (ASP) electronics implemented on a field programmable analog array (FPAA) chip interfaced with an on-chip low-power microcontroller. Physiological features important for calculating hemodynamic parameters (e.g., heart rate, blood volume, and blood flow) are extracted using the custom signal processing circuitry, which consumes a total power of 209 nW. Testing of the signal processing circuitry has been performed using ∼580 sec of an impedance plethysmography dataset collected from the knee of a subject using a custom analog EBI front-end. Results show the similarities of variations in heart rate, blood volume, and blood flow calculated using features extracted by the ASP circuitry implemented on an FPAA and a MATLAB digital signal processing algorithm. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:46:24Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017 | en |
dc.identifier.doi | 10.1109/BHI.2017.7897248 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/37636 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/BHI.2017.7897248 | en_US |
dc.source.title | Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics, BHI 2017 | en_US |
dc.subject | Biomedical signal processing | en_US |
dc.subject | Blood | en_US |
dc.subject | Digital signal processing | en_US |
dc.subject | Electric impedance | en_US |
dc.subject | Electric signal systems | en_US |
dc.subject | Energy efficiency | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Field programmable gate arrays (FPGA) | en_US |
dc.subject | Heart | en_US |
dc.subject | Hemodynamics | en_US |
dc.subject | MATLAB | en_US |
dc.subject | Physiological models | en_US |
dc.subject | Plethysmography | en_US |
dc.subject | Signal systems | en_US |
dc.subject | Statistical tests | en_US |
dc.subject | Analog signal processing | en_US |
dc.subject | Digital signal processing algorithms | en_US |
dc.subject | Electrical bio-impedance | en_US |
dc.subject | Field programmable analog arrays | en_US |
dc.subject | Hemodynamic parameters | en_US |
dc.subject | Impedance plethysmography | en_US |
dc.subject | Low-power microcontrollers | en_US |
dc.subject | Physiological features | en_US |
dc.subject | Signal processing | en_US |
dc.title | Proof-of-concept energy-efficient and real-time hemodynamic feature extraction from bioimpedance signals using a mixed-signal field programmable analog array | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Proof-of-concept energy-efficient and real-time hemodynamic feature extraction from bioimpedance signals using a mixed-signal field programmable analog array.pdf
- Size:
- 1.18 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version