The Paley graph conjecture and Diophantine m-tuples

buir.contributor.authorGüloğlu, Ahmet M.
buir.contributor.authorMurty, M. R.
dc.citation.epage105155-1en_US
dc.citation.spage105155-9en_US
dc.citation.volumeNumber170en_US
dc.contributor.authorGüloğlu, Ahmet M.
dc.contributor.authorMurty, M. R.
dc.date.accessioned2021-02-24T12:25:33Z
dc.date.available2021-02-24T12:25:33Z
dc.date.issued2020
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractA Diophantine m-tuple with property D(n), where n is a nonzero integer, is a set of m positive integers {a1, ..., am} such that aiaj + n is a perfect square for all 1 i < j m. It is known that Mn = sup{|S| : S is a D(n) m-tuple} exists and is O(log |n|). In this paper, we show that the Paley graph conjecture implies that the upper bound can be improved to (log |n|), for any > 0.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-02-24T12:25:33Z No. of bitstreams: 1 The_Paley_graph_conjecture_and_Diophantine_m-tuples.pdf: 307316 bytes, checksum: d12a905da7411c9827356360c6cacb59 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-24T12:25:33Z (GMT). No. of bitstreams: 1 The_Paley_graph_conjecture_and_Diophantine_m-tuples.pdf: 307316 bytes, checksum: d12a905da7411c9827356360c6cacb59 (MD5) Previous issue date: 2020en
dc.embargo.release2022-02-01
dc.identifier.doi10.1016/j.jcta.2019.105155en_US
dc.identifier.issn0097-3165
dc.identifier.urihttp://hdl.handle.net/11693/75560
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.jcta.2019.105155en_US
dc.source.titleJournal of Combinatorial Theory, Series Aen_US
dc.subjectDiophantine m-tuplesen_US
dc.subjectGallagher's sieveen_US
dc.subjectVinogradov's inequalityen_US
dc.subjectPaley graph conjectureen_US
dc.titleThe Paley graph conjecture and Diophantine m-tuplesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_Paley_graph_conjecture_and_Diophantine_m-tuples.pdf
Size:
300.11 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: