Learning bayesian classifiers for scene classification with a visual grammar

dc.citation.epage589en_US
dc.citation.issueNumber3en_US
dc.citation.spage581en_US
dc.citation.volumeNumber43en_US
dc.contributor.authorAksoy, Selimen_US
dc.contributor.authorKoperski, K.en_US
dc.contributor.authorTusk, C.en_US
dc.contributor.authorMarchisio, G.en_US
dc.contributor.authorTilton, J. C.en_US
dc.date.accessioned2019-10-12T08:05:47Z
dc.date.available2019-10-12T08:05:47Z
dc.date.issued2005-03
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractA challenging problem in image content extraction and classification is building a system that automatically learns high-level semantic interpretations of images. We describe a Bayesian framework for a visual grammar that aims to reduce the gap between low-level features and high-level user semantics. Our approach includes modeling image pixels using automatic fusion of their spectral, textural, and other ancillary attributes; segmentation of image regions using an iterative split-and-merge algorithm; and representing scenes by decomposing them into prototype regions and modeling the interactions between these regions in terms of their spatial relationships. Naive Bayes classifiers are used in the learning of models for region segmentation and classification using positive and negative examples for user-defined semantic land cover labels. The system also automatically learns representative region groups that can distinguish different scenes and builds visual grammar models. Experiments using Landsat scenes show that the visual grammar enables creation of high-level classes that cannot be modeled by individual pixels or regions. Furthermore, learning of the classifiers requires only a few training examples.en_US
dc.identifier.doi10.1109/TGRS.2004.839547en_US
dc.identifier.eissn1558-0644en_US
dc.identifier.issn0196-2892en_US
dc.identifier.urihttp://hdl.handle.net/11693/52677en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/TGRS.2004.839547en_US
dc.source.titleIEEE Transactions on Geoscience and Remote Sensingen_US
dc.subjectBayesian methodsen_US
dc.subjectLayouten_US
dc.subjectPixelen_US
dc.subjectImage segmentationen_US
dc.subjectRemote sensingen_US
dc.subjectImage retrievalen_US
dc.subjectContent based retrievalen_US
dc.subjectRemote monitoringen_US
dc.subjectSatellitesen_US
dc.subjectNASAen_US
dc.titleLearning bayesian classifiers for scene classification with a visual grammaren_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Learning_bayesian_classifiers_for_scene_classification_with_a_visual_grammar.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: