Cumulants associated with geometric phases

dc.citation.epage40005-5en_US
dc.citation.issueNumber4en_US
dc.citation.spage40005-1en_US
dc.citation.volumeNumber105en_US
dc.contributor.authorHetényi, B.en_US
dc.contributor.authorYahyavi, M.en_US
dc.date.accessioned2016-02-08T11:00:05Z
dc.date.available2016-02-08T11:00:05Z
dc.date.issued2014en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractThe Berry phase can be obtained by taking the continuous limit of a cyclic product -Im ln ΠM-1 I=0 〈ψ0(ξ I)|ψ0(ξI+1)〉, resulting in the circuit integral i dξ · 〈0(ξ) |∇ξ|ψ0(ξ〉. Considering a parametrized curve ξ(X) we show that a set of cumulants can be obtained from the product ΠM-1 I=0 〈ψ0(XI)|ψ0(XI+1)〉. The first cumulant corresponds to the Berry phase itself, the others turn out to be the associated spread, skew, kurtosis, etc. The cumulants are shown to be gauge invariant. Then the spread formula from the modern theory of polarization is shown to correspond to the second cumulant of our expansion. It is also shown that the cumulants can be expressed in terms of the expectation value of an operator. An example of the spin- 1 2 particle in a precessing magnetic field is analyzed.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T11:00:05Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014en
dc.identifier.doi10.1209/0295-5075/105/40005en_US
dc.identifier.eissn1286-4854
dc.identifier.issn0295-5075
dc.identifier.urihttp://hdl.handle.net/11693/26457
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1209/0295-5075/105/40005en_US
dc.source.titleEPLen_US
dc.titleCumulants associated with geometric phasesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cumulants associated with geometric phases.pdf
Size:
320.71 KB
Format:
Adobe Portable Document Format
Description:
Full printable version