A novel anomaly detection approach based on neural networks

dc.contributor.authorErgen, Tolgaen_US
dc.contributor.authorKerpiççi, Mineen_US
dc.coverage.spatialIzmir, Turkeyen_US
dc.date.accessioned2019-02-21T16:05:08Zen_US
dc.date.available2019-02-21T16:05:08Zen_US
dc.date.issued2018en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 2-5 May 2018en_US
dc.description.abstractIn this paper, we introduce a Long Short Term Memory (LSTM) networks based anomaly detection algorithm, which works in an unsupervised framework. We first introduce LSTM based structure for variable length data sequences to obtain fixed length sequences. Then, we propose One Class Support Vector Machines (OC-SVM) algorithm based scoring function for anomaly detection. For training, we propose a gradient based algorithm to find the optimal parameters for both LSTM architecture and the OC-SVM formulation. Since we modify the original OC-SVM formulation, we also provide the convergence results of the modified formulation to the original one. Thus, the algorithm that we proposed is able to process data with variable length sequences. Also, the algorithm provides high performance for time series data. In our experiments, we illustrate significant performance improvements with respect to the conventional methods.en_US
dc.description.provenanceMade available in DSpace on 2019-02-21T16:05:08Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1109/SIU.2018.8404676en_US
dc.identifier.isbn9781538615010en_US
dc.identifier.urihttp://hdl.handle.net/11693/50233en_US
dc.language.isoTurkishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttps://doi.org/10.1109/SIU.2018.8404676en_US
dc.source.title2018 26th Signal Processing and Communications Applications Conference (SIU)en_US
dc.subjectAnomaly detectionen_US
dc.subjectLong short term memoryen_US
dc.subjectSupport vector machinesen_US
dc.subjectTime series dataen_US
dc.subjectUnsupervised frameworken_US
dc.subjectAykırılık sezimien_US
dc.subjectDestek vektör makinasıen_US
dc.subjectZaman serisi verisien_US
dc.subjectDenetlenmeyen yapıen_US
dc.subjectUzun kısa soluklu belleken_US
dc.titleA novel anomaly detection approach based on neural networksen_US
dc.title.alternativeSinir ağları temelli özgün ayrıklık sezim yöntemien_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_novel_anomaly_detection_approach_based_on_neural_networks.pdf
Size:
842.21 KB
Format:
Adobe Portable Document Format
Description:
Full printable version