Closed timelike curves and geodesics of Godel-type metrics

dc.citation.epage2663en_US
dc.citation.issueNumber7en_US
dc.citation.spage2653en_US
dc.citation.volumeNumber23en_US
dc.contributor.authorGleiser, R. J.en_US
dc.contributor.authorGürses, M.en_US
dc.contributor.authorKarasu, A.en_US
dc.contributor.authorSarioǧlu, Ö.en_US
dc.date.accessioned2016-02-08T10:19:42Z
dc.date.available2016-02-08T10:19:42Z
dc.date.issued2006en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIt is shown explicitly that when the characteristic vector field that defines a Gödel-type metric is also a Killing vector, there always exist closed timelike or null curves in spacetimes described by such a metric. For these geometries, the geodesic curves are also shown to be characterized by a lower-dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. Moreover, two explicit examples are given for which timelike and null geodesics can never be closed. © 2006 IOP Publishing Ltd.en_US
dc.identifier.doi10.1088/0264-9381/23/7/025en_US
dc.identifier.eissn1361-6382
dc.identifier.issn0264-9381
dc.identifier.urihttp://hdl.handle.net/11693/23817
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0264-9381/23/7/025en_US
dc.source.titleClassical and Quantum Gravityen_US
dc.titleClosed timelike curves and geodesics of Godel-type metricsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Closed_timelike_curves_and_geodesics_of_Godel_type_metricss.pdf
Size:
1020.98 KB
Format:
Adobe Portable Document Format
Description:
Full printable version