Closed timelike curves and geodesics of Godel-type metrics
dc.citation.epage | 2663 | en_US |
dc.citation.issueNumber | 7 | en_US |
dc.citation.spage | 2653 | en_US |
dc.citation.volumeNumber | 23 | en_US |
dc.contributor.author | Gleiser, R. J. | en_US |
dc.contributor.author | Gürses, M. | en_US |
dc.contributor.author | Karasu, A. | en_US |
dc.contributor.author | Sarioǧlu, Ö. | en_US |
dc.date.accessioned | 2016-02-08T10:19:42Z | |
dc.date.available | 2016-02-08T10:19:42Z | |
dc.date.issued | 2006 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | It is shown explicitly that when the characteristic vector field that defines a Gödel-type metric is also a Killing vector, there always exist closed timelike or null curves in spacetimes described by such a metric. For these geometries, the geodesic curves are also shown to be characterized by a lower-dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. Moreover, two explicit examples are given for which timelike and null geodesics can never be closed. © 2006 IOP Publishing Ltd. | en_US |
dc.identifier.doi | 10.1088/0264-9381/23/7/025 | en_US |
dc.identifier.eissn | 1361-6382 | |
dc.identifier.issn | 0264-9381 | |
dc.identifier.uri | http://hdl.handle.net/11693/23817 | |
dc.language.iso | English | en_US |
dc.publisher | Institute of Physics Publishing Ltd. | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1088/0264-9381/23/7/025 | en_US |
dc.source.title | Classical and Quantum Gravity | en_US |
dc.title | Closed timelike curves and geodesics of Godel-type metrics | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Closed_timelike_curves_and_geodesics_of_Godel_type_metricss.pdf
- Size:
- 1020.98 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version