Density functional theory investigation of linear carbon chains

Date

2023-09

Editor(s)

Advisor

Gülseren, Oğuz

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this thesis the structural and electronic properties of linear carbon chains are investigated using density functional theory. Polyyne structure of alternating single and triple bonds was shown to be energetically favored structure compared to successive double-double bonded cumulene structure. Band calculations showed that polyyne is a semiconductor whereas cumulene is a metal. Phonon calculations showed that cumulene is unstable. When put in a hexagonal formation these chains are found to form three possibly stable structures, one tightly bound hexagonal tube, and two loosely bound structures one which can be described as a hexagonal assembly of polyyne chains and one which can be considered stacks of hexagonal carbon flakes. Electronic band structure calculations showed that all three structures are semiconductors. Charge density profile showed strong chemical bonds both in vertical and horizontal directions for the first structure, whereas second structure of polyyne chains had no strong bonds between chains and third structure of hexagon flakes showed no strong bond between hexagon flakes. It is also found that as hexagon size shrinks the favored structure of chains changes from polyyne to cumulene and a band structure calculation showed that a semiconductor to metal transition happens.

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)