Alkali metal intercalation in MXene/Graphene heterostructures: a new platform for ion battery applications

buir.contributor.authorGülseren, Oğuz
dc.citation.epage734en_US
dc.citation.issueNumber4en_US
dc.citation.spage727en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorDemiroğlu, İ.en_US
dc.contributor.authorPeeters, F. M.en_US
dc.contributor.authorGülseren, Oğuzen_US
dc.contributor.authorÇakır, D.en_US
dc.contributor.authorSevik, C.en_US
dc.date.accessioned2020-02-17T06:29:31Z
dc.date.available2020-02-17T06:29:31Z
dc.date.issued2019
dc.departmentDepartment of Physicsen_US
dc.description.abstractThe adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)2, Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)2. Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-17T06:29:31Z No. of bitstreams: 1 Alkali_metal_intercalation_in_MXene_graphene_heterostructures_a_new_platform_for_ion_battery_applications.pdf: 4376111 bytes, checksum: 6f79629c7f5c62543671c571ae068a3e (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-17T06:29:31Z (GMT). No. of bitstreams: 1 Alkali_metal_intercalation_in_MXene_graphene_heterostructures_a_new_platform_for_ion_battery_applications.pdf: 4376111 bytes, checksum: 6f79629c7f5c62543671c571ae068a3e (MD5) Previous issue date: 2019en
dc.identifier.doi10.1021/acs.jpclett.8b03056en_US
dc.identifier.issn1948-7185
dc.identifier.urihttp://hdl.handle.net/11693/53377
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://dx.doi.org/10.1021/acs.jpclett.8b03056en_US
dc.source.titleJournal of Physical Chemistry Lettersen_US
dc.subjectBinding energyen_US
dc.subjectTwo dimensional materialsen_US
dc.subjectIonsen_US
dc.subjectBatteriesen_US
dc.subjectHeterostructuresen_US
dc.titleAlkali metal intercalation in MXene/Graphene heterostructures: a new platform for ion battery applicationsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alkali_metal_intercalation_in_MXene_graphene_heterostructures_a_new_platform_for_ion_battery_applications.pdf
Size:
4.17 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: