Surface differentiation and localization by parametric modeling of infrared intensity scans

Date

2005

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
22
downloads

Citation Stats

Series

Abstract

In this study, surfaces with different properties are differentiated with simple low-cost infrared (IR) emitters and detectors in a location-invariant manner. The intensity readings obtained from such sensors are highly dependent on the location and properties of the surface, which complicates the differentiation and localization process. Our approach, which models IR intensity scans parametrically, can distinguish different surfaces independent of their positions. The method is verified experimentally with wood, Styrofoam packaging material, white painted wall, white and black cloth, and white, brown, and violet paper. A correct differentiation rate of 100% is achieved for six surfaces and the surfaces are localized within absolute range and azimuth errors of 0.2 cm and 1.1°, respectively. The differentiation rate decreases to 86% for seven surfaces and to 73% for eight surfaces. The method demonstrated shows that simple IR sensors, when coupled with appropriate processing, can be used to differentiate different types of surfaces in a location-invariant manner.

Source Title

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2005

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English