Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror

dc.citation.epage6en_US
dc.citation.spage1en_US
dc.citation.volumeNumber10126en_US
dc.contributor.authorOnural, Leventen_US
dc.coverage.spatialSan Francisco, California, United Statesen_US
dc.date.accessioned2018-04-12T11:43:52Zen_US
dc.date.available2018-04-12T11:43:52Zen_US
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 28 January - 2 February 2017en_US
dc.descriptionConference Name: SPIE OPTO, 2017en_US
dc.description.abstractEven barely acceptable quality holographic 3D video displays require hundreds of mega pixels with a pixel size in the order of a fraction of a micrometer, when conventional flat panel SLM arrangement is used. Smaller pixel sizes are essential to get larger diffraction angles. Common flat display panels, however, have pixel sizes in the order of tens of micrometers, and this results in diffraction angles in the order of one degree. Here in this design, an array of commonly available (similar to high-end mobile phone display panels) flat display panels, is used. Each flat panel, as an element of the array, directs its outgoing low-diffraction angle light beam to corresponding small portion of a large size paraboloid mirror; the mirror then reflects the slowly-expanding, information carrying beam to direct it at a certain exit angle; this beam constitutes a portion of the final real ghost-like 3D holographic image. The collection of those components from all such flat display panels cover the entire 360-degrees and thus constitute the final real 3D table-top holographic display with a 360-degrees viewing angle. The size of the resultant display is smaller compared to the physical size of the paraboloid mirror, or the overall size of the display panel array; however, an acceptable size table top display can be easily constructed for living-room viewing. A matching camera can also be designed by reversing the optical paths and by replacing the flat display panels by flat wavefront capture devices.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:43:52Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1117/12.2267337en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/11693/37558en_US
dc.language.isoEnglishen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2267337en_US
dc.source.titleProceedings of SPIE Vol. 10126, Advances in Display Technologies VIIen_US
dc.subjectHolographic 3DTVen_US
dc.subjectHolographic displaysen_US
dc.subjectHolographic videoen_US
dc.subjectDiffractionen_US
dc.subjectDisplay devicesen_US
dc.subjectHolographyen_US
dc.subjectLight modulatorsen_US
dc.subjectMicrometersen_US
dc.subjectHolographic imagesen_US
dc.titleDesign of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirroren_US
dc.typeConference Paperen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror.pdf
Size:
411.7 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version