Multi-Hamiltonian structure of equations of hydrodynamic type

dc.citation.epage2611en_US
dc.citation.issueNumber11en_US
dc.citation.spage2606en_US
dc.citation.volumeNumber31en_US
dc.contributor.authorGümral, H.en_US
dc.contributor.authorNutku, Y.en_US
dc.date.accessioned2016-02-08T10:56:21Z
dc.date.available2016-02-08T10:56:21Z
dc.date.issued1990en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation governing the motion of plane sound waves of nite amplitude and another quasi-linear second order wave equation. There exists a doubly in- nite family of conserved Hamiltonians for the equations of gas dynamics which degenerate into one, namely the Benney sequence, for shallow water waves. We present further in nite sequences of conserved quantities for these equations. In the case of multi-component equations of hydrodynamic type, we show that Kodama's generalization of the shallow water equations admits bi-Hamiltonian structure.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:56:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1990en
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11693/26199
dc.language.isoEnglishen_US
dc.publisherA I P Publishing LLCen_US
dc.source.titleJournal of Mathematical Physicsen_US
dc.titleMulti-Hamiltonian structure of equations of hydrodynamic typeen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multi-Hamiltonian structure of equations of hydrodynamic type.pdf
Size:
158.91 KB
Format:
Adobe Portable Document Format
Description:
Full printable version