A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems
buir.contributor.author | Özbay, Hitay | |
dc.citation.epage | 2830 | en_US |
dc.citation.issueNumber | 11 | en_US |
dc.citation.spage | 2824 | en_US |
dc.citation.volumeNumber | 48 | en_US |
dc.contributor.author | Fioravanti, A.R. | en_US |
dc.contributor.author | Bonnet, C. | en_US |
dc.contributor.author | Özbay, Hitay | en_US |
dc.contributor.author | Niculescu, S. I. | en_US |
dc.date.accessioned | 2016-02-08T09:44:07Z | |
dc.date.available | 2016-02-08T09:44:07Z | |
dc.date.issued | 2012-08-14 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | This paper aims to provide a numerical algorithm able to locate all unstable poles, and therefore the characterization of the stability as a function of the delay, for a class of linear fractional-order neutral systems with multiple commensurate delays. We start by giving the asymptotic position of the chains of poles and the conditions for their stability for a small delay. When these conditions are met, the root continuity argument and some simple substitutions allow us to determine the locations where some roots cross the imaginary axis, providing therefore the complete characterization of the stability windows. The same method can be extended to provide the position of all unstable poles as a function of the delay. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:44:07Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012 | en |
dc.identifier.doi | 10.1016/j.automatica.2012.04.009 | en_US |
dc.identifier.issn | 0005-1098 | |
dc.identifier.uri | http://hdl.handle.net/11693/21277 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.automatica.2012.04.009 | en_US |
dc.source.title | Automatica | en_US |
dc.subject | Delay effects | en_US |
dc.subject | Fractional systems | en_US |
dc.subject | Neutral systems | en_US |
dc.subject | Root-locus | en_US |
dc.subject | Asymptotic position | en_US |
dc.subject | Commensurate delays | en_US |
dc.subject | Delay effects | en_US |
dc.subject | Fractional systems | en_US |
dc.subject | Imaginary axis | en_US |
dc.subject | Neutral systems | en_US |
dc.subject | Numerical algorithms | en_US |
dc.subject | Simple substitution | en_US |
dc.subject | Time-delay systems | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Delay control systems | en_US |
dc.subject | Poles | en_US |
dc.subject | Root loci | en_US |
dc.subject | Stability | en_US |
dc.title | A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A numerical method for stability windows and unstable root-locus calculation for linear fractional time-delay systems.pdf
- Size:
- 1.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version