Refining 3D human texture estimation from a single image

buir.contributor.authorAltındiş, Said Fahri
buir.contributor.authorGüdükbay, Uğur
buir.contributor.authorDündar, Ayşegül
buir.contributor.orcidAltındiş, Said Fahri|0009-0005-5527-4986
buir.contributor.orcidGüdükbay, Uğur|0000-0003-2462-6959
buir.contributor.orcidDündar, Ayşegül|0000-0003-2014-6325
dc.citation.epage11475
dc.citation.issueNumber12
dc.citation.spage11464
dc.citation.volumeNumber46
dc.contributor.authorAltındiş, Said Fahri
dc.contributor.authorMeric, Adil
dc.contributor.authorDalva, Yusuf
dc.contributor.authorGüdükbay, Uğur
dc.contributor.authorDündar, Ayşegül
dc.date.accessioned2025-02-27T05:55:59Z
dc.date.available2025-02-27T05:55:59Z
dc.date.issued2024-12
dc.departmentDepartment of Computer Engineering
dc.description.abstractEstimating 3D human texture from a single image is essential in graphics and vision. It requires learning a mapping function from input images of humans with diverse poses into the parametric (uv) space and reasonably hallucinating invisible parts. To achieve a high-quality 3D human texture estimation, we propose a framework that adaptively samples the input by a deformable convolution where offsets are learned via a deep neural network. Additionally, we describe a novel cycle consistency loss that improves view generalization. We further propose to train our framework with an uncertainty-based pixel-level image reconstruction loss, which enhances color fidelity. We compare our method against the state-of-the-art approaches and show significant qualitative and quantitative improvements.
dc.identifier.doi10.1109/TPAMI.2024.3456817
dc.identifier.eissn1939-3539
dc.identifier.issn0162-8828
dc.identifier.urihttps://hdl.handle.net/11693/116880
dc.language.isoEnglish
dc.publisherIEEE
dc.relation.isversionofhttps://dx.doi.org/10.1109/TPAMI.2024.3456817
dc.rightsCC BY-NC-ND 4.0 DEED (Attribution-NonCommercial-NoDerivatives 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.titleIEEE Transactions on Pattern Analysis and Machine Intelligence
dc.subjectTexture estimation
dc.subjectDeformable convolution
dc.subjectUncertainty estimation
dc.titleRefining 3D human texture estimation from a single image
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Refining_3D_Human_Texture_Estimation_From_a_Single_Image.pdf
Size:
4.38 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: