GaN HEMT based MMIC design and fabrication for Ka-band applications

Date

2020-07

Editor(s)

Advisor

Özbay, Ekmel

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
72
views
76
downloads

Series

Abstract

Gallium Nitride (GaN) technology has recently dominated the high power applications in the mm-wave frequencies, and its commercial use is emerging with the upcoming 5G technology. High Electron Mobility Transistors (HEMTs) based on GaN show superior material properties and high power densities, which makes them promising candidates to utilize for Monolithic Microwave Integrated Circuits (MMICs) in high frequency applications. NANOTAM’s 0.15µm/0.2µm GaN HEMT on Silicon Carbide (SiC) microfabrication process is used to fabricate the transistors and passive components. Process steps are explained, as well as in-house epitaxial growth. Fabricated transistors are characterized for their direct current (DC), small-signal, and large-signal performances. T-gate structure of the transistors is optimized for the highest gain performance at 35GHz. A three-stage MMIC amplifier is designed, fabricated in two process cycles, and measurements are performed on-wafer at room temperature. The best performing MMIC shows a small-signal gain higher than 23.1dB with an output power of 31.9dBm and a power-added efficiency (PAE) of 26.5% at 35GHz.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)