Hurwitz equivalence of braid monodromies and extremal elliptic surfaces

dc.citation.epage1120en_US
dc.citation.issueNumber6en_US
dc.citation.spage1083en_US
dc.citation.volumeNumber103en_US
dc.contributor.authorDegtyarev, A.en_US
dc.date.accessioned2016-02-08T09:49:44Z
dc.date.available2016-02-08T09:49:44Z
dc.date.issued2011en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe discuss the equivalence between the categories of certain ribbon graphs and subgroups of the modular group Γ and use this equivalence to construct exponentially large families of not Hurwitz equivalent simple braid monodromy factorizations of the same element. As an application, we also obtain exponentially large families of topologically distinct algebraic objects such as extremal elliptic surfaces, real trigonal curves, and real elliptic surfaces. © 2011 London Mathematical Society.en_US
dc.identifier.doi10.1112/plms/pdr013en_US
dc.identifier.eissn1460-244X
dc.identifier.issn0024-6115
dc.identifier.urihttp://hdl.handle.net/11693/21682
dc.language.isoEnglishen_US
dc.publisherWileyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1112/plms/pdr013en_US
dc.source.titleProceedings of the London Mathematical Societyen_US
dc.titleHurwitz equivalence of braid monodromies and extremal elliptic surfacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hurwitz equivalence of braid monodromies and extremal elliptic surfaces.pdf
Size:
515.45 KB
Format:
Adobe Portable Document Format
Description:
Full printable version