A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna

buir.contributor.authorSadeghi-Tarakameh, Alireza
buir.contributor.authorAtalar, Ergin
buir.contributor.orcidSadeghi-Tarakameh, Alireza|0000-0001-5718-6553
buir.contributor.orcidAtalar, Ergin|0000-0002-6874-6103
dc.citation.epage2088en_US
dc.citation.issueNumber4en_US
dc.citation.spage2074en_US
dc.citation.volumeNumber87en_US
dc.contributor.authorSadeghi-Tarakameh, Alireza
dc.contributor.authorJungst, S.
dc.contributor.authorLanagan, M.
dc.contributor.authorDelaBarre, L.
dc.contributor.authorWu, X.
dc.contributor.authorAdriany, G.
dc.contributor.authorMetzger, G. I.
dc.contributor.authorMoortele, P. F.
dc.contributor.authorUgurbil, K.
dc.contributor.authorAtalar, Ergin
dc.contributor.authorEryaman, Y.
dc.date.accessioned2022-03-01T07:22:24Z
dc.date.available2022-03-01T07:22:24Z
dc.date.issued2021-11-05
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNational Magnetic Resonance Research Center (UMRAM)en_US
dc.description.abstractPurpose: The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate(NODES) antenna, for building transmit arrays at ultrahigh- field.Methods: We optimized a dipole antenna at 10.5 Tesla by maximizing the B+1- SAR efficiency in a phantom for a human spine target. The optimization pa-rameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simu-lations as well as phantom experiments to compare the transmit/receive perfor-mance of the proposed NODES antenna design with existing coil elements from the literature.Results: Single NODES element showed up to 18% and 30% higher B+1- SAR ef-ficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z- stacked array formation; it is additionally capable of providing a relatively uni-form current distribution along its conductors. The nine- channel transmit/re-ceive NODES array achieved 7.5% higher B+1homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g- averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine.Conclusion: In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole ele-ments and may provide improved transmit/receive performance for future ultra-high field MRI applications.en_US
dc.embargo.release2022-11-05
dc.identifier.doi10.1002/mrm.29096en_US
dc.identifier.eissn1522-2594
dc.identifier.issn0740-3194
dc.identifier.urihttp://hdl.handle.net/11693/77634
dc.language.isoEnglishen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.relation.isversionofhttps://doi.org/10.1002/mrm.29096en_US
dc.source.titleMagnetic Resonance in Medicineen_US
dc.subject10.5 Teslaen_US
dc.subjectMRIen_US
dc.subjectNODESen_US
dc.subjectRF safetyen_US
dc.subjectSpine imagingen_US
dc.subjectUltrahigh- fielden_US
dc.titleA nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antennaen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_nine-channel_transmitreceive_array_for_spine_imaging_at_10.5_T_Introduction_to_a_nonuniform_dielectric_substrate_antenna.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: