Bergman projections on Besov spaces on balls

dc.citation.epage403en_US
dc.citation.issueNumber2en_US
dc.citation.spage385en_US
dc.citation.volumeNumber49en_US
dc.contributor.authorKaptanoǧlu, H. T.en_US
dc.date.accessioned2016-02-08T10:23:15Z
dc.date.available2016-02-08T10:23:15Z
dc.date.issued2005en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractExtended Bergman projections from Lebesgue classes onto all Besov spaces on the unit ball are defined and characterized. Right inverses and adjoints of the projections share the property that they are imbeddings of Besov spaces into Lebesgue classes via certain combinations of radial derivatives. Applications to the Gleason problem at arbitrary points in the ball, duality, and complex interpolation in Besov spaces are obtained. The results apply, in particular, to the Hardy space H2, the Arveson space, the Dirichlet space, and the Bloch space. © 2005 University of Illinois.en_US
dc.identifier.eissn1945-6581
dc.identifier.issn0019-2082
dc.identifier.urihttp://hdl.handle.net/11693/24044
dc.language.isoEnglishen_US
dc.publisherDuke University Pressen_US
dc.source.titleIllinois Journal of Mathematicsen_US
dc.titleBergman projections on Besov spaces on ballsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bergman_Projections_on_Besov_Spaces_on_Balls.pdf
Size:
301.27 KB
Format:
Adobe Portable Document Format
Description:
Full printable version