Z-theorems: Limits of stochastic equations
dc.citation.epage | 938 | en_US |
dc.citation.issueNumber | 5 | en_US |
dc.citation.spage | 917 | en_US |
dc.citation.volumeNumber | 6 | en_US |
dc.contributor.author | Anisimov, V. V. | en_US |
dc.contributor.author | Pflug, G. Ch. | en_US |
dc.date.accessioned | 2016-02-08T10:36:49Z | |
dc.date.available | 2016-02-08T10:36:49Z | |
dc.date.issued | 2000 | en_US |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | Let fn(è, ù) be a sequence of stochastic processes which converge weakly to a limit process f 0(è, ù). We show under some assumptions the weak inclusion of the solution sets èn(ù) fè : fn(è, ù) 0g in the limiting solution set è0(ù) fè : f 0(è, ù) 0g. If the limiting solutions are almost surely singletons, then weak convergence holds. Results of this type are called Z-theorems (zero-theorems). Moreover, we give various more speci®c convergence results, which have applications for stochastic equations, statistical estimation and stochastic optimization. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:36:49Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2000 | en |
dc.identifier.doi | 10.2307/3318762 | en_US |
dc.identifier.issn | 1350-7265 | |
dc.identifier.uri | http://hdl.handle.net/11693/24961 | |
dc.language.iso | English | en_US |
dc.publisher | International Statistical Institute | en_US |
dc.relation.isversionof | https://www.jstor.org/stable/3318762 | en_US |
dc.source.title | Bernoulli | en_US |
dc.subject | Asymptotic distribution | en_US |
dc.subject | Consistency | en_US |
dc.subject | Stochastic equations | en_US |
dc.subject | Stochastic inclusion | en_US |
dc.title | Z-theorems: Limits of stochastic equations | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Z-theorems Limits of stochastic equations.pdf
- Size:
- 369.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version