A parametric simplex algorithm for linear vector optimization problems

dc.citation.epage242en_US
dc.citation.issueNumber1-2en_US
dc.citation.spage213en_US
dc.citation.volumeNumber163en_US
dc.contributor.authorRudloff, B.en_US
dc.contributor.authorUlus, F.en_US
dc.contributor.authorVanderbei, R.en_US
dc.date.accessioned2018-04-12T10:37:36Z
dc.date.available2018-04-12T10:37:36Z
dc.date.issued2017en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractIn this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (the Evans–Steuer) algorithm (Math Program 5(1):54–72, 1973). Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Löhne (Vector optimization with infimum and supremum. Springer, Berlin, 2011), that is, it finds a subset of efficient solutions that allows to generate the whole efficient frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczyński and Vanderbei (Econometrica 71(4):1287–1297, 2003). The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm [Benson’s algorithm in Hamel et al. (J Global Optim 59(4):811–836, 2014)], that also provides a solution in the sense of Löhne (2011), and with the Evans–Steuer algorithm (1973). The results show that for non-degenerate problems the proposed algorithm outperforms Benson’s algorithm and is on par with the Evans–Steuer algorithm. For highly degenerate problems Benson’s algorithm (Hamel et al. 2014) outperforms the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than the Evans–Steuer algorithm. © 2016, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:37:36Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1007/s10107-016-1061-zen_US
dc.identifier.issn0025-5610
dc.identifier.urihttp://hdl.handle.net/11693/36366
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-016-1061-zen_US
dc.source.titleMathematical Programmingen_US
dc.subjectAlgorithmsen_US
dc.subjectLinear vector optimizationen_US
dc.subjectMultiple objective optimizationen_US
dc.subjectParameter space segmentationen_US
dc.subjectLinear programmingen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectOptimizationen_US
dc.subjectParameter estimationen_US
dc.subjectVector spacesen_US
dc.subjectVectorsen_US
dc.subjectDegenerate problemsen_US
dc.subjectEfficient frontieren_US
dc.subjectLinear optimization problemsen_US
dc.subjectLinear vectorsen_US
dc.subjectMultiple-objective optimizationen_US
dc.subjectParameter spacesen_US
dc.subjectSimplex algorithmen_US
dc.subjectVector optimizationsen_US
dc.subjectAlgorithmsen_US
dc.titleA parametric simplex algorithm for linear vector optimization problemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_parametric_simplex_algorithm_for_linear_vector_optimization_problems.pdf
Size:
849.63 KB
Format:
Adobe Portable Document Format
Description:
Full printable version