Hierarchical parallelization of the multilevel fast multipole algorithm (MLFMA)

Date

2013

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the IEEE

Print ISSN

0018-9219

Electronic ISSN

Publisher

IEEE

Volume

101

Issue

2

Pages

332 - 341

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Due to its O(N log N) complexity, the multilevel fast multipole algorithm (MLFMA) is one of the most prized algorithms of computational electromagnetics and certain other disciplines. Various implementations of this algorithm have been used for rigorous solutions of large-scale scattering, radiation, and miscellaneous other electromagnetics problems involving 3-D objects with arbitrary geometries. Parallelization of MLFMA is crucial for solving real-life problems discretized with hundreds of millions of unknowns. This paper presents the hierarchical partitioning strategy, which provides a very efficient parallelization of MLFMA on distributed-memory architectures. We discuss the advantages of the hierarchical strategy over previous approaches and demonstrate the improved efficiency on scattering problems discretized with millions of unknowns. © 1963-2012 IEEE.

Course

Other identifiers

Book Title

Citation