Mathematical model of causal inference in social networks

Date

2016

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016

Print ISSN

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

1165 - 1168

Language

Turkish

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
4
downloads

Series

Abstract

In this article, we model the effects of machine learning algorithms on different Social Network users by using a causal inference framework, making estimation about the underlying system and design systems to control underlying latent unobservable system. In this case, the latent internal state of the system can be a wide range of interest of user. For example, it can be a user's preferences for some certain products or affiliation of the user to some political parties. We represent these variables using state space model. In this model, the internal state of the system, e.g. the preferences or affiliations of the user is observed using user's connections with the Social Networks such as Facebook status updates, shares, comments, blogs, tweets etc.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)