Memory-efficient constrained delaunay tetrahedralization of large three-dimensional triangular meshes

Date

2022-07

Editor(s)

Advisor

Güdükbay, Uğur

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
67
downloads

Series

Abstract

We propose a divide-and-conquer algorithm that can solve the Constrained De-launay Tetrahedralization (CDT) problem. It consists of three stages: Input Partitioning, Surface Closure, and Merge. We first partition the input into sev-eral pieces to reduce the problem size. We apply 2D Triangulation to close the open boundaries to make new pieces watertight. Each piece is then sent to Tet-Gen [Hang Si, “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”, ACM Transactions on Mathematical Software, Vol. 41, No. 2, Article No. 11, 36 pages, January 2015] for processing. We finally merge each tetrahedral mesh to calculate the final solution. In addition, we apply post-processing to remove vertices we introduced during the input partitioning stage to preserve the in-put triangles. An alternative approach that does not insert new vertices and eliminates the need for post-processing is also possible but not robust. The benefit of our method is that it can reduce memory usage or increase the speed of the process. It can even tetrahedralize meshes that TetGen cannot do due to the memory’s insufficiency. We also observe that this method can increase the overall tetrahedral mesh quality.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)