Comparison of morphometric parameters in prediction of hydrocephalus using random forests

Available
The embargo period has ended, and this item is now available.

Date

2020-01-01

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
28
downloads

Attention Stats

Series

Abstract

Ventricles of the human brain enlarge with aging, neurodegenerative diseases, intrinsic, and extrinsic pathologies. The morphometric examination of neuroimages is an effective approach to assess structural changes occurring due to diseases such as hydrocephalus. In this study, we explored the effectiveness of commonly used morphological parameters in hydrocephalus diagnosis. For this purpose, the effect of six common morphometric parameters; Frontal Horns' Length (FHL), Maximum Lateral Length (MLL), Biparietal Diameter (BPD), Evans' Ratio (ER), Cella Media Ratio (CMR), and Frontal Horns’ Ratio (FHR) were compared in terms of their importance in predicting hydrocephalus using a Random Forest classifier. The experimental results demonstrated that hydrocephalus can be detected with 91.46 % accuracy using all of these measurements. The accuracy of classification using only CMR and FHL reached up to 93.33 %. In terms of individual performances, CMR and FHL were the top performers whereas BPD and FHR did not contribute as much to the overall accuracy.

Source Title

Computers in Biology and Medicine

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English