Representations of functions harmonic in the upper half-plane and their applications

buir.advisorOstrovskii, Lossif V.
dc.contributor.authorGergün, Seçil
dc.date.accessioned2016-07-01T10:58:22Z
dc.date.available2016-07-01T10:58:22Z
dc.date.issued2003
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIn this thesis, new conditions for the validity of a generalized Poisson representation for a function harmonic in the upper half-plane have been found. These conditions differ from known ones by weaker growth restrictions inside the halfplane and stronger restrictions on the behavior on the real axis. We applied our results in order to obtain some new factorization theorems in Hardy and Nevanlinna classes. As another application we obtained a criterion of belonging to the Hardy class up to an exponential factor. Finally, our results allowed us to extend the Titchmarsh convolution theorem to linearly independent measures with unbounded support.en_US
dc.description.statementofresponsibilityGergün, Seçilen_US
dc.format.extentviii, 71 leaves, 30 cmen_US
dc.identifier.itemidBILKUTUPB071986
dc.identifier.urihttp://hdl.handle.net/11693/29354
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalytic curvesen_US
dc.subjectTitchmarsh convolution theoremen_US
dc.subjectNevanlinna characteristicsen_US
dc.subjectNevanlinna classen_US
dc.subjectHardy classen_US
dc.subjectgeneralized Poisson integralen_US
dc.subject.lccQA331 .G47 2003en_US
dc.subject.lcshAnalytic functions.en_US
dc.titleRepresentations of functions harmonic in the upper half-plane and their applicationsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002358.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Full printable version