An application of an optimal behaviour of the greedy solution in number theory
dc.citation.epage | 83 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 69 | en_US |
dc.citation.volumeNumber | 27 | en_US |
dc.contributor.author | Vizvári, B. | en_US |
dc.date.accessioned | 2016-02-08T10:54:02Z | |
dc.date.available | 2016-02-08T10:54:02Z | |
dc.date.issued | 1993 | en_US |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | Let a1, a2, ..., an be relative prime positive integers. The Frobenius problem is to determine the greatest integer not belonging to the set {Σj=1 najxj :x∈Z+ n}. The Frobenius problem belongs to the combinatorial number theory, which is very rich in methods. In this paper the Frobenius problem is handled by integer programming which is a new tool in this field. Some new upper bounds and exact solutions of subproblems are provided. A lot of earlier results obtained with very different methods can be discussed in a unified way. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:54:02Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1993 | en |
dc.identifier.doi | 10.1007/BF01876632 | en_US |
dc.identifier.eissn | 1588-2829 | |
dc.identifier.issn | 0031-5303 | |
dc.identifier.uri | http://hdl.handle.net/11693/26032 | |
dc.language.iso | English | en_US |
dc.publisher | Akademiai Kiado Rt. | en_US |
dc.relation.isversionof | https://doi.org/10.1007/BF01876632 | en_US |
dc.source.title | Periodica Mathematica Hungarica | en_US |
dc.subject | Frobenius problem | en_US |
dc.subject | Greedy solution | en_US |
dc.subject | Integer programing | en_US |
dc.title | An application of an optimal behaviour of the greedy solution in number theory | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- An-application-of-an-optimal-behaviour-of-the-greedy-solution-in-number-theory.pdf
- Size:
- 561.69 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version