Microscopic image classification using sparsity in a transform domain and Bayesian learning
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 1009 | en_US |
dc.citation.spage | 1005 | en_US |
dc.contributor.author | Suhre, Alexander | en_US |
dc.contributor.author | Erşahin, Tülin | en_US |
dc.contributor.author | Çetin-Atalay, Rengül | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.coverage.spatial | Barcelona, Spain | en_US |
dc.date.accessioned | 2016-02-08T12:16:39Z | |
dc.date.available | 2016-02-08T12:16:39Z | |
dc.date.issued | 2011 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 29 Aug.-2 Sept. 2011 | en_US |
dc.description.abstract | Some biomedical images show a large quantity of different junctions and sharp corners. It is possible to classify several types of biomedical images in a region covariance approach. Cancer cell line images are divided into small blocks and covariance matrices of image blocks are computed. Eigen-values of the covariance matrices are used as classification parameters in a Bayesian framework using the sparsity of the parameters in a transform domain. The efficiency of the proposed method over classification using standard Support Vector Machines (SVM) is demonstrated on biomedical image data. © 2011 EURASIP. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:16:39Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011 | en |
dc.identifier.issn | 2076-1465 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/28294 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.source.title | 2011 19th European Signal Processing Conference | en_US |
dc.subject | A-transform | en_US |
dc.subject | Bayesian frameworks | en_US |
dc.subject | Bayesian learning | en_US |
dc.subject | Biomedical image data | en_US |
dc.subject | Biomedical images | en_US |
dc.subject | Cancer cell lines | en_US |
dc.subject | Classification parameters | en_US |
dc.subject | Covariance matrices | en_US |
dc.subject | Image blocks | en_US |
dc.subject | Region covariance | en_US |
dc.subject | Sharp corners | en_US |
dc.subject | Cell culture | en_US |
dc.subject | Covariance matrix | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Support vector machines | en_US |
dc.title | Microscopic image classification using sparsity in a transform domain and Bayesian learning | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Microscopic_image_classification_using_sparsity_in_a_transform_domain_and_Bayesian_learning.pdf
- Size:
- 1.99 MB
- Format:
- Adobe Portable Document Format
- Description: