New identities for 7-cores with prescribed BG-rank

dc.citation.epage5259en_US
dc.citation.issueNumber22en_US
dc.citation.spage5246en_US
dc.citation.volumeNumber308en_US
dc.contributor.authorBerkovich, A.en_US
dc.contributor.authorYesilyurt, H.en_US
dc.date.accessioned2016-02-08T10:06:58Z
dc.date.available2016-02-08T10:06:58Z
dc.date.issued2008en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet π be a partition. BG-rank(π) is defined as an alternating sum of parities of parts of π [A. Berkovich, F.G. Garvan, On the Andrews-Stanley refinement of Ramanujan's partition congruence modulo 5 and generalizations, Trans. Amer. Math. Soc. 358 (2006) 703-726. [1]]. Berkovich and Garvan [The BG-rank of a partition and its applications, Adv. in Appl. Math., to appear in 〈http://arxiv.org/abs/math/0602362〉] found theta series representations for the t-core generating functions ∑n ≥ 0 at, j (n) qn, where at, j (n) denotes the number of t-cores of n with BG-rank = j. In addition, they found positive eta-quotient representations for odd t-core generating functions with extreme values of BG-rank. In this paper we discuss representations of this type for all 7-cores with prescribed BG-rank. We make an essential use of the Ramanujan modular equations of degree seven [B.C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991] to prove a variety of new formulas for the 7-core generating functionunder(∏, j ≥ 1) frac((1 - q7 j)7, (1 - qj)) .These formulas enable us to establish a number of striking inequalities for a7, j (n) with j = - 1, 0, 1, 2 and a7 (n), such asa7 (2 n + 2) ≥ 2 a7 (n), a7 (4 n + 6) ≥ 10 a7 (n) . Here a7 (n) denotes a number of unrestricted 7-cores of n. Our techniques are elementary and require creative imagination only. © 2007 Elsevier B.V. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:06:58Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1016/j.disc.2007.09.044en_US
dc.identifier.eissn1872-681X
dc.identifier.issn0012-365X
dc.identifier.urihttp://hdl.handle.net/11693/22956
dc.language.isoEnglishen_US
dc.publisherElsevier BV * North-Hollanden_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.disc.2007.09.044en_US
dc.source.titleDiscrete Mathematicsen_US
dc.subject7 - coresen_US
dc.subjectBG - ranken_US
dc.subjectModular equationsen_US
dc.subjectPartition inequalitiesen_US
dc.subjectPositive eta - quotientsen_US
dc.subject7 - coresen_US
dc.subjectBG - ranken_US
dc.subjectModular equationsen_US
dc.subjectPartition inequalitiesen_US
dc.subjectPositive eta-quotientsen_US
dc.subjectFunction evaluationen_US
dc.titleNew identities for 7-cores with prescribed BG-ranken_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New_identities_for_7_cores_with_prescribed_BG_rank.pdf
Size:
190.28 KB
Format:
Adobe Portable Document Format
Description:
Full printable version