Dynamics of neural fields with exponential temporal kernel

buir.contributor.authorAtay, Fatihcan M.
buir.contributor.orcidAtay, Fatihcan M.|0000-0001-6277-6830
dc.citation.epage122
dc.citation.issueNumber2
dc.citation.spage107
dc.citation.volumeNumber143
dc.contributor.authorShamsara, Elham
dc.contributor.authorYamakou, Marius E.
dc.contributor.authorAtay, Fatihcan M.
dc.contributor.authorJost, Jürgen
dc.date.accessioned2025-02-28T11:30:21Z
dc.date.available2025-02-28T11:30:21Z
dc.date.issued2024-03-09
dc.departmentDepartment of Mathematics
dc.description.abstractWe consider the standard neural field equation with an exponential temporal kernel. We analyze the time-independent (static) and time-dependent (dynamic) bifurcations of the equilibrium solution and the emerging spatiotemporal wave patterns. We show that an exponential temporal kernel does not allow static bifurcations such as saddle-node, pitchfork, and in particular, static Turing bifurcations. However, the exponential temporal kernel possesses the important property that it takes into account the finite memory of past activities of neurons, which Green’s function does not. Through a dynamic bifurcation analysis, we give explicit bifurcation conditions. Hopf bifurcations lead to temporally non-constant, but spatially constant solutions, but Turing–Hopf bifurcations generate spatially and temporally non-constant solutions, in particular, traveling waves. Bifurcation parameters are the coefficient of the exponential temporal kernel, the transmission speed of neural signals, the time delay rate of synapses, and the ratio of excitatory to inhibitory synaptic weights.
dc.identifier.doi10.1007/s12064-024-00414-7
dc.identifier.eissn1611-7530
dc.identifier.issn1431-7613
dc.identifier.urihttps://hdl.handle.net/11693/117000
dc.language.isoEnglish
dc.publisherSpringer
dc.relation.isversionofhttps://dx.doi.org/10.1007/s12064-024-00414-7
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleTheory in Biosciences
dc.subjectNeural fields
dc.subjectExponential temporal kernel
dc.subjectLeakage
dc.subjectTransmission delays
dc.subjectBifurcation analysis
dc.subjectSpatiotemporal patterns
dc.titleDynamics of neural fields with exponential temporal kernel
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dynamics_of_neural_fields_with_exponential_temporal_kernel.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: