Point cloud registration with quantile assignment

buir.contributor.authorOğuz, Ecenur
buir.contributor.authorDoğan, Yalım
buir.contributor.authorGüdükbay, Uğur
buir.contributor.authorKaraşan, Oya
buir.contributor.authorPınar, Mustafa Çelebi
buir.contributor.orcidDoğan, Yalım|0000-0002-0814-2439
buir.contributor.orcidKaraşan, Oya|0000-0002-3853-4003
buir.contributor.orcidGüdükbay, Uğur|0000-0003-2462-6959
buir.contributor.orcidPınar, Mustafa Çelebi|0000-0002-8307-187X
dc.citation.epage38-17
dc.citation.spage38-1
dc.citation.volumeNumber35
dc.contributor.authorOğuz, Ecenur
dc.contributor.authorDoğan, Yalım
dc.contributor.authorGüdükbay, Uğur
dc.contributor.authorKaraşan, Oya
dc.contributor.authorPınar, Mustafa
dc.date.accessioned2025-02-28T10:33:26Z
dc.date.available2025-02-28T10:33:26Z
dc.date.issued2024-03-19
dc.departmentDepartment of Industrial Engineering
dc.departmentDepartment of Computer Engineering
dc.description.abstractPoint cloud registration is a fundamental problem in computer vision. The problem encompasses critical tasks such as feature estimation, correspondence matching, and transformation estimation. The point cloud registration problem can be cast as a quantile matching problem. We refined the quantile assignment algorithm by integrating prevalent feature descriptors and transformation estimation methods to enhance the correspondence between the source and target point clouds. We evaluated the performances of these descriptors and methods with our approach through controlled experiments on a dataset we constructed using well-known 3D models. This systematic investigation led us to identify the most suitable methods for complementing our approach. Subsequently, we devised a new end-to-end, coarse-to-fine pairwise point cloud registration framework. Finally, we tested our framework on indoor and outdoor benchmark datasets and compared our results with state-of-the-art point cloud registration methods.
dc.identifier.doi10.1007/s00138-024-01517-3
dc.identifier.eissn1432-1769
dc.identifier.issn0932-8092
dc.identifier.urihttps://hdl.handle.net/11693/116988
dc.language.isoEnglish
dc.publisherSpringer
dc.relation.isversionofhttps://doi.org/10.1007/s00138-024-01517-3
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleMachine Vision & Applications
dc.subjectPoint cloud registration
dc.subjectFast point feature histograms (FPFH) descriptor
dc.subjectQuantile assignment
dc.subjectIterative closest point algorithm
dc.subjectBipartite graph matching
dc.subjectHungarian algorithm
dc.subjectHopcroft–Karp algorithm
dc.titlePoint cloud registration with quantile assignment
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Point_cloud_registration_with_quantile_assignment.pdf
Size:
3.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: